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Abstract

In genome-wide association studies, penalization is becoming an important ap-
proach for identifying genetic markers associated with disease. Motivated by the fact
that there exists natural grouping structure in SNPs and more importantly such groups
are correlated, we propose a new penalization method for group variable selection which
can properly accommodate the correlation between adjacent groups. This method is
based on a combination of the group Lasso penalty and a quadratic penalty on differ-
ence of regression coefficients of adjacent groups. The new method is referred to as
Smoothed Group Lasso, or SGL. It encourages group sparsity and smoothes regres-
sion coefficients for adjacent groups. Canonical correlations are applied to the weights
between groups in the quadratic difference penalty. We derive a group coordinate de-
scent algorithm for computing the solution path. This algorithm takes the solution
of a closed form of SGL for a single group model and is efficient and stable in high-
dimensional settings. The SGL method is further extended to logistic regression for
binary response. With the assistance of MM algorithm, the logistic regression model
with SGL penalty turns out to be an iteratively penalized least-square problem. Prin-
cipal components are used to reduce dimensionality locally within groups. Simulation
studies are used to evaluate the finite sample performance. Comparison with group
Lasso shows that SGL is more effective in selecting true groups. We also analyze a
rheumatoid arthritis data by applying the SGL method under logistic regression model.

Keywords: Group selection; Linkage Disequilibrium; Smoothing; Regularization; SNP.

1 Introduction

In genome-wide association studies (GWAS), hundreds of thousands of single nucleotide

polymorphisms (SNPs) are genotyped using array-based technologies for a large number of
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individuals, typically ranging from several hundred to several thousand. Standard GWAS

methods are single SNP-based, in the sense that they analyze one SNP at a time. Single-

SNP approaches may not be appropriate when we investigate a complex polygenic trait,

since they fail to take into account the accumulated and/or joint effects of multiple genetic

markers on the trait. In contrast, multivariate analysis, which describes the joint effects of

multiple SNPs in a single statistical model, may be more appropriate.

In GWAS, it is expected that only a subset of SNPs are associated with the response vari-

ables. Thus to analyze SNP data in a multivariate model, variable selection is needed along

with regularized estimation. Penalization methods have been adopted for such a purpose.

SNPs are naturally ordered along the genome with respect to their physical positions. They

can be highly correlated due to tight linkage and linkage disequilibrium. Therefore, it is sen-

sible to group SNPs based on their physical locations and correlation patterns among them.

Commonly adopted penalization approaches, such as Lasso, Bridge, SCAD and MCP [Tib-

shirani, 1996, Frank and Friedman, 1993, Fan and Li, 2001, Zou and Hastie, 2005], assume

interchangeable effects and cannot effectively accommodate grouping structure. The “group

versions” of Lasso, elastic net, SCAD and MCP have been developed to analyze data that

have the grouping structure [Bakin, 1999, Yuan and Lin, 2006, Wang et al., 2007, Friedman

et al., 2010b, Huang et al., 2011b].

In addition to the grouping structure in SNP data, there is also possible strong correlation

among adjacent groups. For the dataset described in Section 5, we find that even after

grouping SNPs based on their physical locations and correlations, there still exist strong

correlations among groups (see Fig. 1). In a recent study [Huang et al., 2011a], it is shown

that a sparse Laplacian shrinkage estimator, which “smoothes” over regression coefficients for

highly correlated covariates, may have superior estimation and variable selection properties.

This approach can effectively accommodate the correlation among covariates but not the
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grouping structure.

[Figure 1 about here.]

In this article, we develop a novel penalization method for estimation and variable selec-

tion with GWAS data. Our goal is to identify markers associated with response variables,

while properly accommodating the unique characteristics of high-dimensionality, grouping

structure and correlation between groups of GWAS data. The proposed approach is referred

to as smoothed group Lasso, or SGL. Its penalty is the sum of the group Lasso penalty and

the quadratic penalty on difference of regression coefficients of adjacent groups. The group

Lasso penalty promotes sparsity and can select groups of SNPs associated with responses.

The second penalty term, the quadratic difference penalty, takes into account the natural

ordering of groups and adaptively accommodates the correlation between adjacent groups.

Here, the correlations between groups are measured with canonical correlations. We derive

a group coordinate descent algorithm for computing the SGL estimator. It is efficient and

stable even in high-dimensional settings. Beyond developing the new penalty, we also inves-

tigate several related practical problems. The first is an extension of the proposed approach

to incorporate negative log-likelihood as a loss function for case-control studies. In practical

data analysis, high correlations within groups lead to high colinearity among variables, which

can have adverse effects on selection and estimation results. We propose applying principal

components analysis (PCA) within each group to locally reduce dimensionality and colinear-

ity. In addition, a modified multi-split method is used to evaluate the statistical significance

of selected groups.

In Section 2, we introduce the SGL penalty and develop a group coordinate descent

(GCD) algorithm for quadratic loss functions. Tuning parameter selection is also discussed.

In Section 3, we investigate several related practical issues, including accommodating case-

control data, reducing dimensionality within groups using PCA and evaluating significance
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level. Simulation studies are conducted in Section 4. We analyze a case-control study on

rheumatoid arthritis in Section 5. The article concludes with discussion in Section 6.

2 Smoothed Group LASSO

2.1 Data and Model Setting

Here we first consider quadratic loss functions, which naturally arise from linear regres-

sion with continuous responses. Extension to binary trait with logistic regression model is

discussed in Section 3.

Suppose that the data consists of n subjects. Let yi be the continuous response variable

for subject i. The genotype at a SNP is scored as 0, 1, or 2 depending on the number of

copies of a reference allele in a subject. The SNPs are divided into J groups, each with

size dj, j = 1, . . . , J , according to their physical locations and correlation patterns. Our

approach for grouping SNPs is discussed in more detail in Section 5 below. Let xij be the

dj × 1 covariates vector corresponding to the jth group of the SNPs for the ith subject.

Denote βj as the dj × 1 vector of regression coefficients for xij. It measures the effect size

for predictors in the jth group. Let β = (β′1, . . . , β
′
J)′. Assume the linear regression model

yi = β0 +
∑J

j=1 x
′
ijβj +εi, where β0 is the intercept and εi is the random error. With centered

response variables and standardized covariates, we can assume β0 = 0. We consider the

quadratic loss function

`(β) =
1

2n

n∑
i=1

(yi −
J∑
j=1

x′ijβj)
2 =

1

2n
||Y −

J∑
j=1

Xjβj||2,

where Y = (y1, . . . , yn)′, Xj is an n × dj matrix corresponding to the jth group, and || · ||

denotes the l2 norm.
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2.2 Penalized estimation

As discussed in Section 1, the goals of the SGL approach are two-fold. The first is to select

groups of SNPs associated with response variables. The second is to smooth regression

coefficients between adjacent groups with strong correlations.

To achieve the first goal, we use the group Lasso penalty [Bakin, 1999, Yuan and Lin,

2006, Meier et al., 2008], which is defined as

ρ(||βj||Σj ;
√
djλ1) = λ1

√
dj||βj||Σj , (1)

where ||βj||Σj = (β′jΣjβj)
1/2, Σj = X ′jXj/n is the empirical covariance matrix for the jth

group, and λ1 > 0 is a data-dependent tuning parameter. In expression (1), the rescaling

factor
√
dj makes the penalty level proportional to group size. It ensures that small groups

are not overwhelmed by large groups in selection. The group Lasso penalty has been investi-

gated in multiple studies [Bakin, 1999, Yuan and Lin, 2006, Huang et al., 2009]. A blockwise

standardization method has been proposed by Kim et al. [2006]. Meier et al. [2008] develop

a block coordinate descent algorithm.

To achieve the second goal, we propose a new penalty that can adaptively incorporate

possible correlations between adjacent groups. Specifically, consider

λ2

2

J−1∑
j=1

ζjd
( ||βj||Σj√

dj
−
||βj+1||Σj+1√

dj+1

)2

,

where λ2 is a data-dependent tuning parameter, the weight ζj is a measure of correlation

between the jth and (j + 1)th groups and d = max{dj : j = 1, . . . , J} is the largest group

size. Here d is used to scale the squared difference of the two norms so that λ2 can be on the

same scale as λ1. In this study, we set ζj as the canonical correlation between two groups.

More details on this measure are provided in Appendix. This penalty has been motivated by

the following considerations. When ζj = 0, the two groups are unrelated, and there should
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be no relationship between the regression coefficients. Hence the penalty reduces to zero.

When ζj gets larger, the two groups are more highly correlated and hence the corresponding

regression coefficients should be “more similar”. A penalty on the difference of norm may

shrink the difference. Note that we only penalize the difference between adjacent groups.

Such groups are physically next to each other and hence are more likely to have similar

regression coefficients if they are highly correlated. In addition, our empirical investigation

shows that groups far away from each other tend to have ζ ∼ 0. Introducing a large number

of penalties with ζ ∼ 0 may increase computational cost and reduce stability. Even though

it is possible to extend the proposed penalty and consider all possible pairs of groups, we

choose to focus on the adjacent pairs because of the above considerations.

In summary, the proposed SGL penalty function is

Pλ1,λ2(β) =
J∑
j=1

λ1

√
dj||βj||Σj +

λ2

2

J−1∑
j=1

ζjd
( ||βj||Σj√

dj
−
||βj+1||Σj+1√

dj+1

)2

.

Given a loss function `(β0,β), the SGL estimate β̂ is defined as the minimizer of

Ln(β, λ1, λ2) = `(β) + Pλ1,λ2(β).

2.3 Group coordinate descent algorithm

The group coordinate descent(GCD) algorithm is originally proposed for group Lasso [Yuan

and Lin, 2006] and has also been used for computing the group MCP solutions [Huang

et al., 2011b]. It is a natural extension of the coordinate descent algorithm [Fu, 1998, Wu

and Lange, 2007, Friedman et al., 2010a]. The GCD algorithm optimizes a target function

with respect to a single group parameter at a time and iteratively cycles through all group

parameters until convergence is reached. It is particularly suitable for problems such as the

current one which has a simple closed-form solution for a single group but lacks one with

multiple groups.
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First for each group, we orthogonalize the design matrix so that the empirical covariance

matrix is equal to identity. We can write Σj = R′jRj for a dj × dj upper triangular matrix

Rj with positive diagonal entries via the Cholesky decomposition. Let X̃j = XjR
−1
j and

bj = Rjβj. With the transformation, the objective function is

Ln(b, λ1, λ2) =
1

2n
||Y −

J∑
j=1

X̃jbj||2 +
J∑
j=1

λ1

√
dj||bj||+

λ2

2

J−1∑
j=1

ζjd(
||bj||√
dj
− ||bj+1||√

dj+1

)2,

where b = (b′1, . . . , b
′
J)′. Note that n−1X̃jX̃j = R−1′

j (n−1X ′jXj)R
−1
j . Thus using the || · ||Σj

norm amounts to standardizing the design matrices. Therefore, without loss of generality,

we assume that Xj’s are orthonormalized with n−1X ′jXj = Idj .

Given the group parameter vectors βk (k 6= j) fixed at their current estimates β̃
(s)
k , we

seek to minimize the objective function Ln(β, λ1, λ2) with respect to the jth group parameter

βj, Here only the terms involving βj in Ln(β, λ1, λ2) matter. Some algebra shows that this

problem is equivalent to minimizing R(βj) defined as

R(βj) = C(β̃) +
1

2
ajβ

′
jβj − b′jβj + cj||βj||, j = 1, . . . , J, (2)

where aj = 1 + λ2d
dj

(ζj−1 + ζj), bj = n−1X ′jr + β̃
(s)
j , cj = λ1

√
dj − λ2d√

dj
(ζj−1

||β̃j−1||√
dj−1

+ ζj
||β̃j+1||√
dj+1

),

and C(β̃) is a constant free of β.

It can be shown that the minimizer of R(βj) in expression (2) is

β̃j =
1

aj

(
1− cj
||bj||

)
+

bj. (3)

This explicit solution greatly facilitates the implementation of the GCD algorithm described

below.

Let β̃
(0)

= (β̃
(0)
1 , . . . , β̃

(0)
J )′ be the initial value. A convenient choice for the initial value

is zero (component wise). With fixed λ1 and λ2, the GCD algorithm proceeds as follows:

1. Set s = 0. Initialize the vector of residuals r = Y −
∑J

j=1 Xjβ̃
(0)
j .
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2. For j = 1, . . . , J ,

(a) Calculate aj, bj and cj in expression (2);

(b) Update β̃
(s+1)
j = 1

aj

(
1− cj

||bj ||

)
+
bj using expression (3);

(c) Update r ← r − Xj(β̃
(s+1)
j − β̃(s)

j ) and j ← j + 1;

3. Update s← s+ 1;

4. Repeat Steps 2 and 3 until convergence.

Of note, in the above algorithm, we take the convention that ζ0 = ζJ = 0.

In step 2b, the SGL takes a form similar to group soft-thresholding operator for the Lasso

estimates. The biggest difference lies in the support of cj. With group Lasso, cj = λ1

√
dj

and is always positive. However, with SGL, cj as defined in step 2a can be negative or

positive depending on the choice of λ2 and the weight ζ. Under the simplified scenario

with only one group, the group Lasso and SGL estimates are the same. With multiple

groups, consider for example the jth group. If its adjacent groups are selected with nonzero

regression coefficients, then cj−1 and cj+1 from the adjacent groups get smaller. Group j

is then more likely to be selected, which is intuitively reasonable. Furthermore, in step 2a,

λ2 is reweighted with additional 1/
√
dj, which accounts for the size of the jth group. This

implies that groups with smaller sizes are affected more by the same change of the adjacent

groups. The solution path for a simulated dataset is provided in Fig. 2 for group Lasso and

SGL with η = 0.1, η = 0.2 and η = 0.5, respectively, where η = λ1 + λ2 is the sum of the

penalty parameters.

[Figure 2 about here.]
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The convergence of this algorithm follows from Theorem 4.1(c) of Tseng [2001]. This

can be shown as follows. The objective function of SGL can be written as f(β) = f0(β) +∑J
j=1 fj(βj) where

f0(β) =
1

2n
||Y −

J∑
j=1

Xjβj||2 +
λ2

2

J−1∑
j=1

ζjd
( ||βj||√

dj
− ||βj+1||√

dj+1

)2

,

and fj(βj) = λ1

√
dj||βj||. Since f is regular in the sense of (5) in Tseng (2001) and∑J

j=1 fj(βj) is separable (group-wise), the GCD solutions converge to a coordinatewise min-

imum point of f , which is also a stationary point of f .

2.4 Selection of tuning parameters

There are various methods that can be applied, which include AIC, BIC, cross-validation and

generalized cross-validation. However, they are all based upon prediction error. In GWAS,

disease markers may not be in the set of SNP markers. Practically it is rare that disease

markers are a part of SNP data, which consequently results in non-true model for SNP data.

Hence, the methods mentioned above may be inadequate in GWAS.

We adopt the approach proposed in Wu et al. [2009], which sets a predetermined number

of selected SNPs based on the unique nature of GWAS. We implement a combination of

bracketing and bisection to search for the tuning parameter that yields a predetermined

number of selected SNPs. For this purpose, tuning parameters λ1 and λ2 are reparameterized

as τ=λ1+λ2 and η=λ1/τ . The value of η is fixed beforehand. We use a bisection approach

to find the τ value such that r(τ), the number of selected markers, is equal to s. Let τmax

be the smallest value for which all estimated coefficients are 0. From the update steps 2a

and 2b, τmax = maxj ||n−1X ′jY||/(η
√
dj). We select ε (usually =0.01 in numerical studies)

and let τmin=ετmax. Initially, we set τl = τmin and τu = τmax. If r(τu) < s < r(τl), then

we employ bisection. This involves testing the midpoint τm = 1
2
(τl + τu). There are three
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possibilities. If r(τm) < s, replace τu by τm. If r(τm) > s, replace τl by τm. If r(τm) = s, the

calculation is terminated. In either of the first two cases, we bisect again and continue the

loop until r(τm) = s.

3 Practical Considerations

3.1 Accommodating case-control data with logistic regression

Consider a case-control study with n subjects. For the ith subject, let yi ∈ {0, 1} denote

the response variable and xi = (x′i1, . . . , x
′
iJ)′. The logistic regression model assumes that

p(xi) = Pr(yi = 1|xi) = 1/(1 + exp(−(β0 +
∑J

j=1 x
′
ijβj))). The SGL estimate is defined as

the minimizer of the penalized negative log-likelihood, that is,

(β̂0, β̂) = argmin
(β0,β)∈Rp+1

[`(β0,β) + Pλ1,λ2(β)] . (4)

The negative log-likelihood function in expression (4) is

`(β0,β) = − 1

n

n∑
i=1

[
yi · (β0 +

J∑
j=1

x′ijβj)− log(1 + e(β0+
∑J
j=1 x

′
ijβj))

]
. (5)

When implementing the GCD algorithm, there is no simple, closed-form solution for

penalized estimation with a single group. To tackle this problem, we propose using an MM

approach [Ortega and Rheinboldt, 2000]. Note that negative log-likelihood (5) is a convex

function. With the MM approach, we majorize the negative log-likelihood by a quadratic

loss given by

`Q(β0,β|β̃0, β̃) =
1

8n

n∑
i=1

(zi − β0 − xi′β)2 + C(β̃0, β̃),

where zi = β̃0 + xTi β̃ + yi−p̃(xi)
p̃(xi)(1−p̃(xi))

and p̃(xi) = 1

1+e−(β̃0+xT
i

β̃)
are evaluated at the current

estimate (β̃0, β̃), and the last term is free of (β0,β).

With fixed (λ1, λ2), our computational algorithm consists of a sequence of nested loops:
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Outer loop: Update the majorized quadratic function lQ using the current estimates (β̃0, β̃).

Inner loop: Run the GCD algorithm developed for the penalized least-squares problem

(Section 2.3) and solve for

argmin(β0,β)∈Rp+1

{
`Q(β0,β|β̃0, β̃) + Pλ1,λ2(β)

}
.

We note that in the penalized group least-squares problem (2.3), we do not estimate β0.

In logistic regression with the SGL penalty, we can estimate it after estimating all other

βjs for each majorized function as β̂0 =
∑n

i (zi − xi)′β̂/n. In addition, τmax is not explicitly

defined as in linear models. We evaluate the quadratic approximation for the negative log-

likelihood at all coefficients βj, j = 1, . . . , J, equal to zero. Then τmax can be calculated in a

similar way.

3.2 Reducing within-group colinearity and dimensionality

Because SNPs are densely located in many regions, there may exist high correlations within

a group of SNPs due to high linkage disequilibrium. This may cause instability problem in

Cholesky decomposition when some eigenvalues of the correlation matrices are too small.

In our group selection, we are more interested in the group effects as opposed to specific

covariates within groups. To reduce the dimensionality within groups and to tackle the

colinearity problem, in data analysis when there is evidence for a lack of stability, we propose

to first conduct principal component analysis (PCA) within groups. Specifically, we conduct

PCA for each group. We choose the number of PCs such that 90% of the total variation

is explained. Then PCs, as opposed to the original covariates, are used for downstream

analysis. Our empirical study suggests that this simple step may effectively guarantee that

the smallest eigenvalues of the covariance matrices are not too small and that the Cholesky

decomposition is stable.
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3.3 Significance level for selected SNPs

With penalization methods, the “importance” of a covariate usually is determined by whether

its regression coefficient is nonzero. In GWAS, the p-value is also of interest as a significance

measure. Computing p-value with penalization methods is challenging. Wu et al. [2009]

proposed a leave-one-out approach for the computing p-values of the selected SNPs in the

reduced model. Wu et al. [2009] also commented that this approach may be invalid because

it neglects the complex selection procedure for defining the reduced model in the first place.

Here, we use a multi-split method that is a modification of the method proposed by

Meinshausen et al. [2009] to obtain the p-values. With linear regression, we use the F -test

for each group to evaluate whether there are elements in this group with significant effects.

With logistic regression, we use the likelihood ratio statistic. This procedure will put us in

a position to produce p-values at the group level. It is simulation-based and automatically

adjust for multiple comparisons. Multi-split method proceeds as follows:

1. Randomly split data into two disjoint sets of equal size: Din and Dout. In case-control

studies, we split the samples in a way that maintains the case-control ratio.

2. Fit data in Din with the SGL method. Denote the set of selected groups by S.

3. Compute P̃j, p-value for group j, as follows:

(a) If group j is in set S, set P̃j equal to the p-value from the F -test in the regular

linear regression where group j is the only group. In case-control studies, the

likelihood ratio test is evaluated at this step.

(b) If group j is not in set S, set P̃j = 1.

4. Define the adjusted p-value as Pj = min{P̃j|S|, 1}, j = 1, . . . , J , where |S| is the size

of set S.
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This procedure is repeated B times for each group. Let P
(b)
j denote the adjusted p-value

for group j in the bth iteration. For π ∈ (0, 1), let qπ be the π-quartile of {P (b)
j /π; b =

1, . . . , B}. Define Q̃j(π) = min{1, qπ}. Meinshausen et al. [2009] shows that Q̃j(π) is an

asymptotically correct p-value, adjusted for multiplicity. They also propose an adaptive

version that selects a suitable value of quartile based on data:

Qj = min

{
1, (1− log π0) inf

π∈(π0,1)
Q̃j(π)

}
,

where π0 is chosen to be 0.05. It is shown that Qj, j = 1, . . . , J , can be used for both FWER

(family-wise error rate) and FDR (false discovery rate) control [Meinshausen et al., 2009].

4 Simulation Study

We conduct simulation to better gauge performance of SGL. For comparison, we also consider

group Lasso, which has a statistical framework closest to that of SGL. Four simulation

examples are considered. The first three are linear models with normal residuals. The

fourth one has binary responses. SNPs in the first two models are generated with a two-

stage procedure, which has been adopted from Wu et al. [2009]. First, we draw the predictor

vector xi from a p-dimensional multivariate normal distribution. Then, with the assumption

that SNPs have equal allele frequencies, the genotype of the ith SNP is set to be 0, 1 or

2 according to whether xij < −c,−c < xij < c, or xij > c. The cutoff point -c is the

first quartile of a standard normal distribution. For the third and fourth examples, the

genotype data is excerpted from a real Rheumatoid Arthritis (RA) study (details provided

in Section 5). In all examples, we set n = 400 and p = 5000.

Example 1. In this example, there are 1253 groups for 5000 SNPs. For phenotypic irrelevant

groups i and j, cov(xi, xj) = 0.6|i−j| and cov(xi, xi) = 1. For phenotypic relevant groups k

and l, cov(xk, xl) = 0.8 if k and l are in the same group, cov(xk, xl) = 0.6 if k and l are
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not in the same group, and cov(xk, xk) = 1. There are no correlations between irrelevant

and relevant groups. The size for all irrelevant groups is four. The non-zero groups have

regression coefficients as follows: β25 = β28 = (0.1, 0.1, 0.1, 0.1)′, β26 = 1, β27 = (−1, 1,−1)′,

β1002 = −β1006 = (0.2, 0.2, 0.2, 0.2)′, β1003 = −0.8, β1004 = (−0.8,−0.8)′ and β1005 = −0.8.

The response variable Y is generated from a linear regression model with normal residuals

with mean 0 and standard deviation 1.5. In this example, the relevant groups are independent

of irrelevant groups. Within all groups, SNPs are highly correlated.

Example 2. In this example, we use the same regression coefficients and grouping structure

as with Example 1. A different, particularly auto-regressive correlation structure is adopted.

For SNP i and j, cov(xi, xj) = 0.7|i−j|.

Example 3. In this example, the genotype data is excerpted from a real data set. To make

the LD structure as realistic as possible, genotypes are obtained from the rheumatoid arthritis

(RA) study provided by the Genetic Analysis Workshop (GAW) 16. This study involves 2062

individuals, among which 400 are randomly chosen. Five thousand SNPs are selected from

chromosome 6. For individual i, its phenotype yi is generated from a linear regression model.

The regression coefficients have elements all equal to zero except that (β′705, . . . , β
′
707) =

(0.1, 0.2,−0.1, 0.2, 1,−0.1,−1, 0.1,−1, 0.1,−0.6, 0.2) and (β′709, . . . , β
′
714) = (0.1,−0.6, 0.2, 0.3,−0.1,

0.3, 0.4,−1.2, 0.1, 0.3,−0.7, 0.1, 1, 0.2,−0.4, 0.1, 0.5,−0.2, 0.1). SNPs are grouped if the value

of absolute lag-1 autocorrelation is larger than a certain value, which is 0.2 in Examples 3

and 4, and the number of groups is 1432.

Example 4. In this example, the genotype data and the regression coefficients are the same

as with Example 3. The linear predictors are generated in the same way as with Example

3. The binary response variables are generated from Bernoulli distributions with probability

Pr(yi = 1|xi) = 1

1+e−(β0+x
′
i
β)

.

[Table 1 about here.]
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We analyze Examples 1-4 using the SGL and group Lasso. PCA is used to reduce within-

group collinearity for the simulated datasets. We are aware of other group selection methods,

including for example group bridge and group MCP. We focus on comparison with group

Lasso because of its similarity with the SGL, which may help us better understand the effects

of the smooth penalty. Summary statistics based on 100 replicates are shown in Table 1.

Simulation suggests that the SGL is computationally affordable, with analysis of one replicate

taking about 5 minutes on a desktop PC. For each replicate in all four examples, we prefix

the number of selected groups equal to 15, and use the method described in Section 2.4 for

tuning parameter selection. With a total of 9 true positive groups, selecting 15 groups can

ensure that the majority or all of the true positives can be selected. As shown in Table 1,

we have experienced with different η values and found that η = 0.3 is an appropriate choice

with linear regression and η = 0.1 is appropriate with logistic regression. Note that when

η = 1, the SGL penalty becomes the group Lasso.

[Table 2 about here.]

Table 1 suggests that SGL is capable of selecting the majority of true positives. We do

observe a few false positives, which is reasonable considering the extremely high dimension-

ality and noisy nature of data. Under all simulated scenarios, SGL outperforms group Lasso

by identifying more true positives and/or less false positives, which supports the necessity

of smoothing. We also examine the multi-split approach. For a representative dataset sim-

ulated under Examples 3 and 4 (Table 2 and Table 3), respectively, we show the selected

group norms and their corresponding p-values. Note that the true trait-related groups are

from 705 to 708 and from 710 to 714. We see that SGL models under both linear regression

and logistic regression select a more clustered set of groups. Furthermore, the SGL models

select more groups that are false negative and some of their p-values are significant. Hence

the SGL models outperform the group Lasso in the case of strong correlations among groups.

16



[Table 3 about here.]

5 Analysis of Rheumatoid Arthritis Data

Rheumatoid arthritis (RA) is a long-term condition that leads to inflammation of the joints

and surrounding tissues. It can also affect other organs. RA is a complex human disorder

with a prevalence ranging from around 0.8% in Caucasians to 10% in some native American

groups [Amos et al., 2009]. Several demographical and environmental risk factors have been

suggested, including for example gender and smoking. In addition, there are solid evidences

that multiple genetic risk factors contribute to the risk of RA. Genetic risk factors underlying

RA have been mapped to the HLA region on region 6p21 [Newton et al., 2004], PTPN22

locus at 1p13 [Begovich et al., 2004],and the CTLA4 locus at 2q33 [Plenge et al., 2005].

There are some other loci with weaker effects reported, including loci at 6q (TNFAIP3),

9p13 (CCL21), 10p15 (PRKCQ) and 20q13 (CD40) [Amos et al., 2009].

The GAW 16 data is from the North American Rheumatoid Arthritis Consortium (NARAC).

It was the initial batch of whole genome association data for the NARAC cases (N=868)

and controls (N=1194) after removing duplicated and contaminated samples. SNP genotype

data were generated using an Illumina 550k platform and available for 868 cases and 1194

controls. After quality control and removing SNPs with low minor allele frequencies, there

are 31,670 SNP measurements on chromosome 6.

In Fig. 3 (Appendix), we provide the plot of ζ values. It is easy to see that some

correlations are very high. Note that there are more groups having ζs smaller than 0.6,

since the SNPs are grouped if the absolute lag-1 autocorrelations are larger than 0.6. The

proportion of ζj > 0.6 for 100 non-overlapping groups is also plotted (Fig. 3 (Appendix)).

[Figure 3 about here.]
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With SNP data, one possible way of grouping SNPs is based on the distance to the closest

genes. This can be done with the help of the annotation files. However, overlapping of genes

happens frequently with SNP data. Thus, sometimes it can be difficult to identify which

group a SNP belongs to. Here we use an alternative way to group SNPs. The lag-1 Pearson

correlation coefficients are first calculated for all SNPs. Then we group SNPs using lag-1

correlations: if two adjacent SNPs have absolute correlation larger than 0.6, we put them

in the same group. We choose the threshold to be 0.6 as it leads to a reasonable number of

groups, neither too large nor to small. Different from simulation studies, we do not know

the number of true groups beforehand. We choose the predetermined number of selected

groups equal to 100. This choice has been motivated by several considerations. Fig. 3(a)

and Fig. 3(b) suggest that 100 groups should be sufficient to catch the important groups. In

addition, 100 is large enough so that true positives are likely to be caught; On the other hand,

it is not too large so that there should be not many false positives. From simulation studies,

we choose η = 0.1 for data analysis. The value of the optimal tuning parameter for SGL

with η = 0.1 is 1.783, whereas the value of the optimal tuning parameter for group Lasso is

0.1384. As described in Section 3.2, we apply PCA to reduce dimensionality within groups.

Therefore, a direct plot of point estimates cannot be produced. We use the group norms

to plot against their original positions. The plots for SGL and group Lasso are provided

in Fig. 3(a) and Fig. 3(b), respectively. The smaller dots in the plots are estimates with

insignificant p-values. The larger dots stand for estimates with significant p-values. For

comparison, we also conduct single SNP-based analysis. Results are provided in Fig. 3.

From Fig. 3, we see that single-SNP analysis produces estimates with too much noise

while group Lasso and SGL are capable of conducting screening and yielding much sparser

estimates. Comparing with group Lasso, group estimates from the SGL method are more

clustered in the HLA region that has been found to be associated RA. Moreover, there are
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more significant groups (larger dots) identified by the SGL method in the HLA region. It is

consistent with the results from simulation. The analysis of RA data shows that the SGL

approach is more efficient than the group Lasso.

6 Discussion

Penalization provides an effective way of analyzing the joint effects of multiple SNPs in

GWAS. Because of the natural ordering of SNPs on the genome and possible high linkage

disequilibrium among tightly linked SNPs, SNP data can be highly correlated and hence have

the natural grouping structure. In addition, adjacent groups can still be highly correlated,

which may give rise to similar association with the phenotype of interest. Existing penalized

marker selection methods do not effectively accommodate all the aforementioned properties

of SNP data. In this article, we propose a new penalized marker selection approach. It uses

the group Lasso penalty for group marker selection and, more importantly, a new penalty

to smooth the regression coefficients between adjacent groups. The proposed approach is

intuitively reasonable. We also investigate several related issues, including computation,

within-group local dimension reduction, and evaluation of significance. Our numerical stud-

ies, including simulation and data analysis, show that the proposed approach has satisfactory

performance.

In individual marker and group selections, it has been shown that some penalties can

outperform Lasso-based penalties. It is possible to extend the proposed approach, for ex-

ample, by replacing the group Lasso with group MCP or group SCAD. Such an extension

may incur high computational cost and will not be pursued. There are multiple ways of

defining difference between groups and hence smoothing. The proposed way is computa-

tionally simple and intuitively reasonable. The proposed approach can accommodate more

subtle structure in SNPs. As a consequence, it inevitably demands new structure and tun-
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ings. For example, there may be multiple ways of constructing groups. We are aware of

“more automatic” approaches, for example, the hierarchical clustering plus Gap approach.

However, such methods may rely on assumptions that SNP data clearly violate; and some

methods cannot fully accommodate the spatial adjacency of SNPs on chromosome. The

adopted tuning parameter selection approach has been developed in published studies. Our

literature review suggests that there is a lack of consensus on tuning parameter selection with

high-dimensional SNP data. However, a comprehensive investigation on tuning parameter

selection is beyond the scope of the current paper. In our study, we use a predetermined

number of groups to be selected. Usually, this number can be determined based on prior

knowledge, limitation of resources for downstream analysis, and possible trial and error. We

note that the proposed SGL can be easily coupled with other tuning parameter selection

approaches such as cross validation. In this article, we focus on the development of the new

methodology. Further work is needed to investigate the theoretical properties of the SGL

method.
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Appendix

Canonical correlation

With the SGL penalty, the canonical correlation is suitable to measure the associations

between adjacent groups. Canonical correlation analyzes the correlation between a linear

combination of variables in one set and a linear combination of variables in another set. It

searches for coefficient vectors a and b such that

Corr(U ,V ) =
a′Σ12b√

a′Σ11a
√

b′Σ22b
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is maximized. Here U = a′X (1), V = b′X (2), Σ11 = Cov(X (1),X (1)), Σ22 = Cov(X (2),X (2))

and Σ12 = Cov(X (1),X (2)). By the change of basis and Cauchy-Schwartz inequality, it

can be shown that maxa,b Corr(a′X (1),b′X (2)) =
√
π1, where π1 is the largest eigenvalue of

Σ
−1/2
11 Σ12Σ−1

22 Σ21Σ
−1/2
11 .

Note that canonical correlation is always positive. This can be guaranteed by choosing

an appropriate sign for b. This property is desirable as SGL uses the canonical correlation

as weight to smooth estimates.
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(a) Correlation coefficient ζj

(b) Correlation coefficients larger than 0.6 averaged within non-
overlapping 100-SNPs windows.

Figure 1: Plots of absolute lag-1 autocorrelation ζj on Chromosome 6 from Genetic Analysis
Workshop 16 Rheumatoid Arthritis data.
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(a) Group lasso (b) SGL η=0.5

(c) SGL η=0.2 (d) SGL η=0.1

Figure 2: Solution path for a simulated data for (a) group Lasso, and SGL with (b) η = 0.5,
(c) η = 0.2 and (d) η = 0.1, where η = λ1 +λ2. Black lines are paths of non-zero groups and
grey lines are paths of irrelevant groups
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(a) SGL η = 0.1

(b) group Lasso

(c) Single-SNP Regression

Figure 3: Plots of ||β|| for SGL and group Lasso, and |β| for single-SNP logistic regression.
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Table 1: True positive (number of groups), false discovery rate (FDR) and false negative
rate (FNR) for simulated data.

Example 1 Example 2
η TP∗ FDR FNR TP∗ FDR FNR

0.1 8.95(0.22) 0.40(0.02) 0.006(0.02) 8.59(0.53) 0.43(0.04) 0.05(0.06)
0.2 8.88(0.36) 0.41(0.02) 0.01(0.04) 8.48(0.50) 0.44(0.03) 0.06(0.06)
0.3 8.45(0.58) 0.44(0.04) 0.06(0.06) 8.13(0.56) 0.46(0.04) 0.10(0.06)
0.4 7.90(0.76) 0.47(0.05) 0.12(0.08) 7.77(0.65) 0.48(0.04) 0.14(0.07)
0.5 7.67(0.76) 0.49(0.05) 0.15(0.08) 7.58(0.61) 0.50(0.04) 0.16(0.07)
0.6 7.29(0.62) 0.51(0.04) 0.19(0.07) 7.57(0.66) 0.50(0.04) 0.16(0.07)
0.7 7.36(0.67) 0.51(0.05) 0.18(0.08) 7.44(0.65) 0.50(0.04) 0.17(0.07)
0.8 6.97(0.77) 0.54(0.05) 0.23(0.09) 7.16(0.72) 0.52(0.05) 0.20(0.08)
0.9 6.68(0.76) 0.56(0.05) 0.26(0.09) 7.06(0.75) 0.53(0.05) 0.22(0.08)
1 6.24(0.61) 0.58(0.04) 0.31(0.07) 6.72(0.83) 0.55(0.06) 0.25(0.09)

Example 3 Example 4
η TP∗ FDR FNR TP∗ FDR FNR

0.1 9.00(0.00) 0.40(0.00) 0.00(0.00) 8.41(0.81) 0.44(0.05) 0.07(0.09)
0.2 8.87(0.37) 0.41(0.03) 0.01(0.04) 7.61(0.87) 0.49(0.06) 0.15(0.10)
0.3 8.52(0.52) 0.43(0.04) 0.05(0.06) 7.41(0.74) 0.51(0.05) 0.18(0.08)
0.4 8.15(0.46) 0.46(0.03) 0.09(0.05) 7.33(0.77) 0.51(0.05) 0.19(0.09)
0.5 8.07(0.46) 0.46(0.03) 0.10(0.05) 7.14(0.75) 0.52(0.05) 0.21(0.08)
0.6 7.86(0.45) 0.48(0.03) 0.13(0.05) 6.91(0.74) 0.54(0.05) 0.23(0.08)
0.7 7.79(0.54) 0.48(0.04) 0.13(0.06) 6.63(0.68) 0.56(0.05) 0.26(0.08)
0.8 7.63(0.60) 0.49(0.04) 0.15(0.07) 6.34(0.81) 0.58(0.05) 0.30(0.09)
0.9 7.60(0.53) 0.49(0.04) 0.16(0.06) 5.55(0.87) 0.63(0.06) 0.38(0.10)
1 6.21(0.67) 0.59(0.05) 0.31(0.08) 4.20(0.84) 0.72(0.06) 0.53(0.09)
∗ True Positive.
∗∗ The optimal η for linear models (Example 1—3) is 0.3.
∗∗∗ The optimal η for logistic regression model (Example 4) is 0.1.
∗∗∗∗ When η = 1, the SGL becomes the group Lasso.
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Table 2: Multi-split p-values for a simulated dataset in example 3.
Group Info. Group LASSO SGL

Group index Start index End index ||β̂|| p-value ||β̂|| p-value
150 462 463 0.008 1 0 1
179 551 551 0.043 1 0 1
634 2025 2025 0.016 1 0 1
654 2120 2123 0.011 1 0 1
664 2152 2155 0.002 1 0 1
695 2269 2270 0 1 0.002 1
703 2283 2285 0.009 1 0.0005 1
704 2286 2286 0.072 1 0.018 1
705 2287 2290 0.291 8.2e-08 0.046 5.3e-08
706 2291 2296 0 1 0.026 9.4e-05
708 2299 2299 0 1 0.058 1
709 2300 2303 0.006 2.9e-06 0.196 9.3e-09
710 2304 2306 0.578 2.5e-09 0.176 8.9e-10
711 2307 2307 0.078 0.060 0.139 0.003
712 2308 2310 0 1 0.254 6.9e-10
713 2311 2312 0.544 3.1e-07 0.191 5.9e-08
714 2313 2318 0 1 0.222 5.5e-08
715 2319 2319 0 1 0.058 1
716 2320 2321 0 1 0.014 4.9e-04
773 2528 2531 0.028 1 0 1
782 2558 2559 0.005 1 0 1
1038 3462 3462 0.043 1 0.001 1
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Table 3: Multi-split p-values for a simulated dataset in example 4.
Group Info. Group LASSO SGL

Group index Start index End index ||β̂|| p-value∗ ||β̂|| p-value∗

75 202 202 0.005 1 0 1
175 541 541 0.042 1 0 1
179 551 551 0.043 1 1.0e-04 1
184 567 567 0.008 1 0 1
272 883 883 0.073 1 0 1
296 963 963 0.011 1 0 1
425 1325 1326 0.018 1 0 1
469 1469 1469 0.007 1 0 1
580 1812 1812 0.011 1 7.0e-04 1
596 1866 1866 0 1 1.1e-04 1
683 2219 2220 0.127 1 0.003 1
705 2287 2290 0 1 0.001 0.002
707 2297 2298 0 1 5.3e-4 1
708 2299 2299 0 1 0.036 1
709 2300 2303 0 1 0.048 1
710 2304 2306 0.288 4.3e-09 0.059 1.1e-8
711 2307 2307 0.152 0.007 0.071 0.004
712 2308 2310 0 1 0.077 1.4e-07
713 2311 2312 0.328 1.4e-09 0.075 2.0e-09
714 2313 2318 0 1 0.067 1
715 2319 2319 0 1 0.051 1
716 2320 2321 0 1 0.009 1.9e-04
753 2464 2464 0.013 1 0 1
1361 4737 4737 0.020 1 0 1
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